(Web) Application Development — With lan
Week 3
SQL with Multiple Tables

Join

The join operation allows you to combine related rows of data found in two tables into a single
result set.

It works similarly to a query we did last week:
SELECT hr.EmployeelID, hr.Title, pc.FirstName, pc.LastName

FROM HumanResources.Employee hr, Person.Contact pc
WHERE hr.EmployeeID = pc.ContactID

This query grabs the EmployeelD and Title columns from HumanResources.Employee, and
the FirstName & LastName columns from Person.Contact, where the EmployeelD and
ContactlID are equal to 5.

Note the SELECT hr.EmployeeID short form. I'm using “pc” to refer to Person.Contact. That
alias is set: FROM HumanResources.Employee hr.

Using a join would make this query easier to understand:

SELECT EmployeelID, hr.Title, FirstName, LastName
FROM HumanResources.Employee hr JOIN Person.Contact pc
ON hr.EmployeelID = pc.ContactID

Joining two tables returns rows where the ON condition exists.

Before continuing, create the School database then add the tables as you see them on the next
two pages.

1/7

Table Structure: Teachers
Zalurmn MNarne

TeacherID
FirstMame

LaskMame

Table Teachers Populated:

TeacherID

Table Structure: Courses
Calurmn Mame

CourseID
Instruckar
Title

Table Courses Populated
CourselD

APPLS5Y3E
MEDARS91 96
INFOS9306
MGMTS3567
YDESS5861
APPLS1459
DaGNS3ET1
ki A

...........

Dakta Tyvpe
ink
warchariS0)
warchar(S0)

FirstMame

Andrew

Tan

Dan

ALEL

Data Twpe
char(3)
ink
watchar(50)

Inskruckaor

i I R e SN % N s B o B N

Allow Mulls

el i

LastMarme
amyk.
Wood

Zen

ACAEL

Al Nulls

[N ™

Title

Web application Developrment
Audio | Video

Multimedia Pioneering

Project Managemenk

YWiswual Design

Web Authoring (Flash)

2/7

Table Structure: Students
Zolumn Mame

FirsEMarne

LastMare

Table Students Populated
StudentID

A50-325-333

960-412-574

60-412-577

960-412-575

A50-212-743
b ALEL

Table Structure: Grades
Calumn Mame

StudentID
CaurseID
Grade

Table Grades Populated:
StudentID

Q50-325-333

60-412-577

Qo0-412-875

60-412-577

Qo0-412-875
b ALAEL

Data Twpe

warchar{11]
warchar(50)
warchar(50)

FirstMame
b

Sally

b

Doug
Jack,
ALAL

Data Twpe

warchar(12)
warchar(2)
char(1)

Coursell
MEDAS9196
D5GEMS3571
DSGEMS3571
MEDASS196
MEDASS196
ALLL

Allow Mulls

)

LastMame
Srnith
Long
Mckenzie
Mckenzie
Black.
AL

Al MNulls

[1E OO

arade

| L. 1 R I

3/7

Review:

1) SELECT * FROM Teachers

2) SELECT FirstName FROM Teachers

3) SELECT FirstName, LastName FROM Teachers ORDER BY LastName Desc
4)

SELECT CourselID, Title
FROM Courses
WHERE Instructor = 2

New:

1)

Using a join to get the list of class codes, instructors, and course titles:

SELECT CourselID, FirstName, LastName, Title
FROM Teachers t JOIN Courses c
ON t.TeacherID = c.Instructor

Notice poor Andrew doesn’t show up. He’s not actively teaching this year, so he’s not assigned to
any courses. Thus he is excluded in the join.

2)
Lets put some order to that list:
SELECT CourselID, FirstName, LastName, Title
FROM Teachers t JOIN Courses c
ON t.TeacherID = c.Instructor
ORDER BY LastName

3)
This query will get the same information as, except only returning courses that | teach:

SELECT CourselID, FirstName, LastName, Title
FROM Teachers t JOIN Courses c

ON t.TeacherID = c.Instructor

WHERE FirstName = 'Ian'

Both of these joins are examples of equi-joins, joins where the ON clause uses equals. Unless
otherwise specified, such as an outer-join, joins are generally assumed to be equi-joins.

4/7

4)
In SQL Server 2005 you'll get the same results using INNER JOIN as with regular JOIN

SELECT CourselID, FirstName, LastName, Title
FROM Teachers t INNER JOIN Courses c
ON t.TeacherID = c.Instructor

5)
Self joins allow you to join a table to itself. This is useful when you need to find information that’s
based on more than one column (note: this can be a hard concept to get used to!):

SELECT 'GradeRank' = x.StudentID + ' got a better grade than ' +

y.StudentID

FROM Grades AS x, Grades AS y
WHERE y.CourseID = 'MEDA59196'
AND x.Grade < y.Grade

6)
This can then be ordered by the grade:

SELECT 'GradeRank' = x.StudentID + ' got a better grade than ' +

y.StudentID

FROM Grades AS x, Grades AS y
WHERE y.CourseID = 'MEDA59196'
AND x.Grade < y.Grade

ORDER BY y.Grade

**If 5,6 are unclear don’t worry. We'll be doing more examples of this type of join in the coming
weeks with data it’s easier to see.

7)
Nesting joins allows you to join multiple tables.

Say you wanted to know the name of any students who failed AND the title of the course they
failed:

Lets start by joining the Students with their Grades:

SELECT FirstName, LastName, Grade
FROM Students stu JOIN Grades g
ON stu.StudentID = g.StudentID

Now add a where clause to restrict it to people who failed:
SELECT FirstName, LastName, Grade
FROM Students stu JOIN Grades g
ON stu.StudentID = g.StudentID
WHERE Grade = 'F'

5/7

Now do the 3 table join:

SELECT FirstName, LastName, Grade, Title

FROM Students stu JOIN (Grades grd JOIN Courses c
ON grd.CourseID = c.CourselD)

ON stu.StudentID = grd.StudentID

- Brackets set precedence
- So the Grades are joined to the Course FIRST
- THEN Students are then joined to the Grades

Note: building up your queries in steps will let you find mistakes
easier.

8a)

What if we want to join two tables together, but not all records in
table A have a match in B? Remember when we joined Courses and Teachers
in example 1 we lost Andrew. He isn’t listed in Courses so he didn’t
show up.

SELECT FirstName, LastName, Grade
FROM Students stu LEFT OUTER JOIN Grades grd
ON stu.StudentID = grd.StudentID

Students is the “left” table, Grades the “right”. So precedence is given to the Left in this case,
meaning all rows from the left will be returned even if they don’t have a match in the right.

8b)
SELECT FirstName, LastName, Grade
FROM Students stu RIGHT OUTER JOIN Grades grd
ON stu.StudentID = grd.StudentID

Does it the other way around.

9) Counting

If you want to know the total number of records, or some subset of records, you can use the
count function.

SELECT COUNT (*)

FROM Courses

SELECT COUNT (*) AS [Number of Courses]
FROM Courses

6/7

To Try On Your Own:
1) Get a list of all the student names and ID #'s.

2) Make the list is #1 display alphabetically by last name.

3a) Create and Assignments table with AssignmentID, Title, and Value columns.

3b) Create a Deliverables table with DeliverablelD, ClassID, AssignmentID, and DueDate
columns.

3c) Populate some values into both tables. Make sure you use valid ClassID’s, etc. (If the
data relates to the tables you've already created, use matching data)

(Note: it could be argued that these 2 new tables are not as normalized as they could be.
That'’s fine, it'll make life easier to see what’s going on right now.)

4) Using the new tables you created, write the SQL query that will create this table:

ClazzlD Title YWalue DueDate
DSGMEEE7 Personal Project Topics 10 2006-10-03 03:00:00.000
MGMT53567 Personal Project Topics 10 2006-10-03 09:00:00.000
APPLET1489 FPersonal Froject Topice 10 2006-10-05 15:00:00.000

APPLET459 Test 12 2006-03-23 00:00:00.000

F 2 22—

5) Using nested joins, add on to the above to create this result:

ClaszID Title Title Yalue | DueDate
| DSGMS3871 | Web Design [sHTML) Personal Project Topics 10 2006-10-03 09:00:00.000
MGMTESEE?‘ Fraject Management Ferzanal Project Topice 10 2008-10-03 09:00: 00. 000
APPLE1483 Web Authoring [Flazkh) Pergzonal Project Topice 10 2006-10-05 15:00:00.000

APPLE1483 ‘web Authonng [Flash]) Test 12 2006-03-28 00: 00 00, 000

R R R

7/7

