Basic Programming Concepts w/lan

Take from the now discontinued Director Course
Please note that all code examples herein are written in Lingo.
The fundamental concepts remain the same, but the syntax of ActionScript, C#, etc, are different.

Variables, Data Types, & Arithmetic Operators

Variables act as a type of container in memory that you can store data in. This
information could be anything — a users name, age, file names, movie start times, etc.
All but the most basic of programs will require the use of variables.

It is important to note that a variable can only contain one piece of information at a time

In terms of variables, computers classify information (or data) into different data types.
Depending on the data type, Director will handle the information differently. Some of the

data types you will encounter include: Integers, Floating Points, and Strings.
Note: different languages / environments will have more or less data types. All use these basic types in one
form or other.

Integers are whole numbers - numbers without fractions. For example, 42 is an integer,
while 42.2 is not. 13 is an integer, 13 ' is not.

Floating Points are numbers with decimals. 3.14159 is an example of a floating point
number. So is 42.2.

Note that a number with a 0 decimal place is still a floating point. Ie, 42.0 is a floating
point, not an integer. The floating point accuracy determines the number of decimal
places displayed and can be programmatically set.

To prevent confusion when dealing with integers and floating points, Director will
always display decimal places if it understands a number to be a floating point.
For example:
- If the number is written as 42 Director considers it an integer.
- Ifthe number is written as 42 .0 (or 42 . 000, etc) Director considers it a floating
point.

Strings are some form of text, words, or characters that Director treats as words rather
than as variable names or commands. Generally used with alpha characters, words, or
series of words (you could have pages worth of text in one variable). In order for Director
to differentiate a string from a command the string must be surrounded by quotation
marks. Strings can contain numbers in addition to letters or special characters, but you
cannot perform mathematical operations with strings.

For example,
“Hello World” isastring. “"A” isastring. “This is yet another
examples of a string” also qualifies.

“Halt” is a string, But if you wrote Halt (no quotes) Director would assume
you meant the command Halt, and wanted the program to terminate.

When you give a variable a specific value you are assigning that value to the variable. To
assign the string “Arthur” to the variable theName you would write:
theName = “Arthur”

The variable name is written first, followed by a ‘= sign, then the value to be assigned.
In this context the “=" sign means assign, as in ‘place the following value into the
variable’.

To assign the integer 42 to the variable deepThought you would write:
deepThought = 42

Notice in this instance there are no quotation marks surrounding the integer. Remember,
only strings use the quotation marks. Integers and floating points do not.

If you assign a variable a numeric value, but place quotes around the number, it will be a
string and won’t be treated as a number. This means you can no longer do mathematical

operations with the number.

For example,

a =10

b = 20

c=a+b
The value of ¢ would be 30.
However,

a J— 64107’

b=20

c=a+b

In this case we are attempting to add a string and an integer. What will ¢ end up
equaling? That will depend on the programming environment.

With Lingo the result will be 30.0000 — a floating point. This occurs as Lingo
automatically attempts to convert the string into a numeric value.

But if we did the same thing in Flash using ActionScript would we get the same result?

This situation can occur in languages that are /loosely typed languages that do not force
you to define what data type a variable will be. In these languages one can assign any
value to any variable. In a strongly typed language a variables data type must be declared.
The variable can then only contain data of that type, any operations such as the one in the
above example are forbidden.

(Note: in Flash MX2004 it is an option to use strongly typed variables)

Arithmetic Operators

Arithmetic operators refer to the math functions available in a programming language.
Some of the functions are:

+ Addition

- Subtraction

* Multiplication
/ Division

For example:

a =3
b =2
c=a*hb

C would then equal 6.

Many other operators exist, including modulus (mod), square root (sqrt), and arctangent
(atan), please see your text index under Math for a complete list.

Note: if you divide two integers together, a fraction (decimal) is the result, Director will
simply drop the fraction — it will not round.

Example:
a = 10
b=2=¢6
c=a/b

What is the value of ¢?

If they were floating points instead of integers C would equal 1.7. You may expect that
1.67 would round up to 2. With integer operations this is not the case.

Comparison Operators and Conditional Statements

At some point in your application you will be faced with the need to do one thing or
another based on certain criteria. In fact all problem solving can be broken down until

you reach a Yes or No answer — or as the computer considers things True or False, 1 or 0.
This is called branching, the application will branch off and follow one line of logic or

the other.

For example, you have an on-line ordering form in which the user can specify the
quantity of items they wish to order. You application will probably need to check that
they have some quantity specified, and that the quantity is greater than 0.

To do this you need to use a comparison operator.

Some of the possible comparisons you can use are:
= are the two numbers equal or are the two strings the same?

< is the 1* number less than the 2™, or does the first string come after the
second string alphabetically?

> is the 1 number greater than the 2™, or does the first string come before
the second string alphabetically?

<= less than or equal to

>= greater than or equal to

<> not equal to

NOTE: these apply to Lingo and Director. Different languages use slight variations.
E.g., using == for equals or != for not equal. The concept is the same in any
language.

For example (not syntactically correct):
is 10 > 57
Yes (TRUE)

is “Baby” < “Jack”?
No (FALSE)

is 10 <> 107
No (FALSE)
This works with variables as well:
a = 10
is a = 107
TRUE

a=>5
b =10
is a < b?
FALSE

How do we conduct such a test programmatically? With the use of an IF THEN ELSE
statement which works something like this:

If a = b then

trace (“Yes, the numbers match”)
else

trace (“No, the numbers do not match”)
end if

In this case of:
a = b5
b =25
then the message ‘Yes, the numbers match’ would appear in the Message Window.

But if a and b had these values:
a = b5
b =10
then the message ‘No, the numbers do not match’ would appear instead.

Thus it works like:
i1f valueA (condition) valueB is TRUE
Do this

Otherwise i1t’s FALSE, so:
Do something else
End if

Using our on-line shopping example we want to know if the quantity is greater than 0, if
it’s not tell the user they must specify a quantity. If it is, proceed with the purchase:

if productQuantity > 0 then
-- everything is okay, call my custom handler
proceedToCheckout ()

else
-- an invalid quantity was specified, pop up a warning box
alert (“You must specify a quantity first!”)

end if

Why use productQuantity > 0 instead of productQuantity <> 0 ?

Booleans and Logical Operators

As we’ve seen computers like 1’s and 0’s, TRUE and FALSE. Any time we conduct an
IF THEN ELSE test we get a result that is either TRUE or FALSE.

A Boolean variable is a type of variable that can only be TRUE or FALSE, 1 or 0. They
are very useful for keeping track of states. For example,

if myFavoriteShowIsOn = TRUE then
ignorePhone ()

else
answerPhone ()

end if

In this case depending if we’d how we set myFavoriteShowIsOn we would either
answer or ignore the phone.

Boolean variables used in this manner are often called Flags.

What if we have a situation where we need to test more than one condition
simultaneously? Consider this scenario:

on goOutside
if itsCold = TRUE then
putOndJacket ()
walkOutDoor ()
else
walkOutDoor ()
end if
end

This takes into account one condition, is it cold or not. But what if you wanted to check if
it was raining as well as if it was cold?

Boolean logical operators allow us to consider this scenario. The logical operators are
AND, OR, XOR*, and NOT. (* Lingo does not specifically support XOR)

Used in our scenario above:

On goOutSide
If (itsCold = TRUE) OR (itsRaining = TRUE) then
putOndJacket ()
walkOutDoor ()
Else
walkOutDoor ()
End if
End

Now if it is cold outside, or if it is raining, we put on the jacket before going outside.

A truth table shows us the possible outcomes of a Boolean operation:

AND
Variable A Variable B Result of Variable AND
Variable B
False False False
False True False
True False False
True True True

With AND both Variable A and Variable B must be TRUE for the result to be TRUE.

OR
Variable A Variable B Result of Variable A OR
Variable B
False False False
False True True
True False True
True True True

With OR, either Variable A or Variable B must be TRUE for the result to be TRUE.

XOR (Exclusive OR)

Variable A Variable B Result of Variable A XOR
Variable B
False False False
False True True
True False True
True True False
XOR will return TRUE if only one variable is TRUE.
NOT
Variable A NOT Variable A
False True
True False

NOT returns the opposite value from the one provided. NOT TRUE is FALSE.
These operations can be compounded to create more complex test. Consider this
scenario:

You have been invited to a party and would like to go — but only if your significant other
can come and it’s held on a Saturday night.... and as long as they don’t play any country
music.

Written programmatically you might have something like this:

If (partyDay = “Saturday”) AND (canBringOther = TRUE) AND \
(countryMusic = FALSE) then

_movie.go(“Party”) -—- Would jump to a marker called “Party”
Else

_movie.go(“Home”) -- Would jump to a marker called “Home”
end if

Note: the \ and the end of the first line means that the code has been split and continues
onto a second line. Using this command lets you write one operation across multiple
lines. This in not an issue in Director itself as you can scroll across the code horizontally.
However if you wish to print the code out the print process will cause line wrapping to
occur — splitting one line of code into two (without a visual indicator to warn you of this).

Variable Scope

Scope refers to where something can be seen or used. If something is in or within scope it
is usable, if it is out of scope it is unusable.

Variables can have one of two scopes: local or global.
* NOTE: Director allows for two scopes, other languages support more.

Local variables: can only be declared and used within a single event handler. When the
handler terminates the variable and its value are erased.

Global variables: once declared, can be used from any handler throughout the entire
program or even across multiple Director programs. Global variables are persistent, and
will not lose their value until specifically changed or the program ends.

By default Director assumes all variables are local unless they are specifically declared as
being global.

This example demonstrates a local and global variable. This would be written as a Movie
Script:

global gGlobalVar

on setVars
localVar = “This is a local variable”
gGlobalVar = “This is a global variable”
end

on showVars
trace localVar
trace gGlobalVar
end

In the Message window call the setVars handler by typing setVars().This assigns values
to our variables.

Then type showVars() to call the second handler. The global variable will still contain the
string “This is a global variable” whereas the local variable is VOID
meaning it has no value — there is no such thing as localVar outside the setVars handler.

