	INTERACTIVE MEDIA – INTERACTIVE CODING 1 – SHERIDAN – Dan Zen
	[image: image1.jpg]

 MODULE 4: Sketches and Planss

BUILDING STEPS
1. PLANNING

In general, you come up with an idea (or are given one). You then sketch out what the app will look and work like on paper in a sketch book with pencil and eraser. You might prepare (make and collect) some assets like images, sounds, text (copy). Then you come into your coding tool and start to work.

2. TEMPLATE

A. Desktop
Most desktop apps can be made to FIT the browser window keeping a given proportion. This is easier as you can plan via the pixel where parts will go.

B. Mobile
Most mobile apps however, if professionally made, will adapt to fit different aspect ratios. This will avoid unused bars of space above or below (or beside) the content. On mobile where real estate is important, it is best to make use of all the screen - or at least appear that you are not wasting space. For this, you should use a FULL screen canvas and then individually scale your content. This is tricky to do and we will look at techniques for scaling in the second term when we look at creating for mobile.
C. Embedded
Sometimes we make interactive features that fit within a Web page inside a tag. Then we would fit the canvas to the tag. Depending on what we are making, we may scale the canvas keeping the aspect ratio (like fit). Or we might allow the canvas to take the dimensions of the tag and scale our content individually inside (like full). The former is the easier to build.

3. WHAT TO BUILD FIRST

This really depends on your application and your mood - there is no right answer

What I do is build the main part of the app first. The main part of the app, usually is the hardest and takes the longest. You want to know that this will work before you put any effort in the rest of the app. You also want a clear path to develop and test the main part. So do not build your intro screen first and have to wait for animation and click through every time you want to get to the main part of your app - make the main part first. Things like your intro, help and about screens, conclusions - add these last.
4. BUILDING THE MAIN PART

A. Efficiencies

Once again, this can vary with different apps but here is some advice. You want to make testing as easy as you can without waiting. So do not load large assets at the start - leave your sound until last. If you have to preload graphics... you do not need to use them at the start. You can just draw some shapes and use those as placeholders. Add the preloading and graphics at the end. Now... if you need the graphics to get the mood to see if the app works then that is another matter - say for a comic strip maker you need the backgrounds, etc. So - suit yourself - just remember, you have the option to use placeholders. I find that substituting the final graphics at the end just takes a few minutes. Same with animations - test them and then turn them off or greatly shorten them. You test an application hundreds if not thousands of times so be efficient.
B. Steps

Often in the main part of an application, one thing leads to another - steps.
Probably start with what comes first. If you press a button before things show - make the button. Sometimes there are several parts that can work independently - just choose one then. Programming is a bunch of little parts - functions that grow and work together. I build one part at a time - what else can you do? A part is usually a function and an event is usually what calls the function. Within the event function, we sometimes call other functions. The reason for calling other functions are:

a) the code will be used by more than one function (consolidating - or abstracting)

b) the code is more than 5 lines, does something specific and you want to organize

Inside the main function you will most likely set up the assets. Define the assets and their starting properties. Many values of these properties will be stored in variables up top. This makes it easier to adjust later - we call these initial conditions. Examples, are widths and heights, speeds, spacing, counts, totals, positions. We do not build these to start - we just keep adding them as we build.
So start by making the main asset of your application. If it is simple like a background - then just make it. If it involves many steps then consider putting the steps in a function. Call the function makePart, where part is the name of the part:

let myPart;

makePart();

function makePart() {

// do steps

myPart = new Container(); // or whatever

}

Here is what two parts would look like - note the organization. We have also added an event and an event function. By declaring the part outside the function we can access it in other functions:
let myPart1;

let myPart2;

makePart1();

makePart2();

function makePart2() {

// do steps

myPart2 = new Container(); // or whatever

// example of why we declare parts outside function:

myPart2.addTo(myPart1);

myPart2.on("click", eventFunction);

}

function eventFunction(e) {

// could put this function inside makePart2

// but sometimes we want to share event functions

// if the function is big, I prefer to in-line rather than nest

// nesting means more brackets and can get confusing

// I do tend to nest event functions if they are smaller:

e.target.on("mouseup" function() {

myPart2.alp(.5);

});

}
function makePart1() {

// note that makePart1 moves to below makePart2

// this is a matter of choice - I prefer to work near the top

// that way I am closer to where I set up initial conditions
// I also know that the things I coded earlier are down below

// we tend to work on the more recent code so I stack it on top

// do steps

myPart1 = new Container(); // or whatever

}

C. Nesting

In general, try and only "expose" your main parts ;-). Any sub parts can be accessed as a property of the main part. This helps keep things simple and organized. For instance, say you have three panels each with a textField

do not declare:
let panel1;

let panel2;

let panel3;

let textField1;

let textField2;

let textField3;

just declare the panels and then store a textField property on each one

if the textField is in the panel, then it is a property of the panel:
panel1.textField = new Label(); // etc. for other panels

D. Collections and Containers

Often we have a multiple number of the same type of objects. For instance: 10 monsters, 20 thumbnails, 5 buttons. It is always a good idea to put these and only these into a holder:
const monsters = new Container();

This gives us two advantages:

1. we can operate on the collection in one place

monsters.on("click", roar); // or

monsters.alp(0); // or

monsters.removeAllChildren();

2. we can loop through all of the objects in the collection

let monster;

for (let i=0; i<monsters.numChildren; i++) {

monster = monsters.getChildAt(i);

// do something with the monster

}
// OR a ZIM loop

loop(monsters, monster => {

// do something with the monster

});

// we can process all the objects in the collection with a loop

// for instance, to move or animate or do a hitTest on something

These techniques are very powerful and we use them often. Note that with these techniques, we do not need variables for the objects. If we are processing the event - such as monsters.on("click" roar) we can use e.target to get us the clicked object:

function roar(e) {

// gives us the specific monster that was clicked

const monster = e.target;

}
5. DEBUGGING

If something does not show up then make sure you have added it to the stage and S.update(). If it still does not show - make sure you do not have an error. Also, make sure you are working in the right file. Just put a zog("hello"); just before your code to make sure JavaScript gets there. Perhaps your function name had a typo - or maybe you did not call your function.
An important technique in debugging is to simplify. Test one step at a time and if need-be zog() your steps. If you write lots of lines of code and then test, it is sometimes hard to know what part of the code is not working - so test often.

Make sure that what you are doing works in a "hard coded" case before you get fancy and put the code in a loop or use some sort of dynamic targeting.
6. FINISHING

Once you have made the main part of the application there will be more to do:

A. Information Screens

Most likely there are other screens for intro, help or about. I like to combine these three screens into one if I can but in many cases, they might have to be separate.
To make a screen, make a container and fill it with a background shape. Put Bitmaps and Text objects in the container and perhaps a close button. Then when you want to show the screen screen.addTo(); When you are done with the screen screen.removeFrom();

B. Alerts

Often when we build, we need to tell the user information to help them use the app. This is usually done with an alert box or panel (pane) that pops up over the application. These are usually "modal" which means, the user must deal with the alert before continuing. The panel can have a close button or you can click off - in some cases it may be timed. Sometimes there is an alert area instead of a pop up. These things can usually be programmed after most of the content.
C. Restarting

If you have a game or an experience, you often want to let the user restart. This should be a function so it can be called from multiple places like at the end or with a button. You could refresh the page but this is not an ideal user experience

So, I usually make the time to reset all the properties. A way to do this is to remove the various parts and then call the make functions again which is why it is good to have functions.

7. BUILD PATTERNS

Aside from custom objects, physics, 3D, and data here are some common things we do when we build:
Collections

Snapping

Slider and Proportion

Damping

Tiling

Scrollers
Parallax

Panes

Progress Bars
PAGE
8

[image: image1.jpg]